4.6 Article

Subvoxel precise skeletons of volumetric data based on fast marching methods

期刊

MEDICAL PHYSICS
卷 34, 期 2, 页码 627-638

出版社

WILEY
DOI: 10.1118/1.2409238

关键词

skeleton; centerline; level sets; subvoxel accuracy

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

The accurate calculation of the skeleton of an object is a problem not satisfactorily solved by existing approaches. Most algorithms require a significant amount of user interaction and use a voxel grid to compute discrete and often coarse approximations of this representation of the data. We present a novel, automatic algorithm for computing subvoxel precise skeletons of volumetric data based on subvoxel precise distance fields. Most voxel based centerline and skeleton algorithms start with a binary mask and end with a list of voxels that define the centerline or skeleton. Even though subsequent smoothing may be applied, the results are inherently discrete. Our skeletonization algorithm uses as input a subvoxel precise distance field and employs a number of fast marching method propagations to extract the skeleton at subvoxel precision. We present the skeletons of various three-dimensional (3D) data sets and digital phantom models as validations of our algorithm. (c) 2007 American Association of Physicists in Medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据