4.6 Article

Noise and resolution in images reconstructed with FBP and OSC algorithms for CT

期刊

MEDICAL PHYSICS
卷 34, 期 2, 页码 585-598

出版社

WILEY
DOI: 10.1118/1.2409481

关键词

computed tomography; reconstruction; maximum likelihood; ordered subsets; OSC; FBP; noise; resolution

向作者/读者索取更多资源

This paper presents a comparison between an analytical and a statistical iterative reconstruction algorithm for computed transmission tomography concerning their noise and resolution performance. The reconstruction of two-dimensional images from simulated fan-beam transmission data is performed with a filtered back-projection (FBP) type reconstruction and an iterative ordered subsets convex (OSC) maximum-likelihood method. A special software phantom, which allows measuring the resolution and noise in a nonambiguous way, is used to simulate transmission tomography scans with different signal-to-noise ratios (SNR). The noise and modulation transfer function is calculated for FBP and OSC reconstruction at several positions, distributed over the field-of-view (FOV). The reconstruction with OSC using different numbers of subsets shows an inverse linear relation to the number of iterations that are necessary to reach a certain resolution and SNR, i.e., increasing the number of subsets by a factor x reduces the number of required iterations by the same factor. The OSC algorithm is able to achieve a nearly homogeneous high resolution over the whole FOV, which is not achieved with FBP. The OSC method achieves a lower level of noise compared with FBP at the same resolution. The reconstruction with OSC can save a factor of up to nine of x-ray dose compared with FBP in the investigated range of noise levels. (c) 2007 American Association of Physicists in Medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据