4.7 Article

Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome

期刊

AMERICAN JOURNAL OF HUMAN GENETICS
卷 80, 期 2, 页码 361-371

出版社

CELL PRESS
DOI: 10.1086/511387

关键词

-

资金

  1. FIC NIH HHS [D43 TW006176, D43 TW06176] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM066895, GM066895] Funding Source: Medline

向作者/读者索取更多资源

HOXD13, the homeobox-containing gene located at the most 5' end of the HOXD cluster, plays a critical role in limb development. It has been shown that mutations in human HOXD13 can give rise to limb malformations, with variable expressivity and a wide spectrum of clinical manifestations. Polyalanine expansions in HOXD13 cause synpolydactyly, whereas amino acid substitutions in the homeodomain are associated with brachydactyly types D and E. We describe two large Han Chinese families with different limb malformations, one with syndactyly type V and the other with limb features overlapping brachydactyly types A4, D, and E and mild syndactyly of toes 2 and 3. Two-point linkage analysis showed LOD scores > 3 (theta =0) for markers within and/or flanking the HOXD13 locus in both families. In the family with syndactyly type V, we identified a missense mutation in the HOXD13 homeodomain, c.950A -> G(p.Q317R), which leads to substitution of the highly conserved glutamine that is important for DNA-binding specificity and affinity. In the family with complex brachydactyly and syndactyly, we detected a deletion of 21 bp in the imperfect GCN ( where N denotes A, C, G, or T) triplet-containing exon 1 of HOXD13, which results in a polyalanine contraction of seven residues. Moreover, we found that the mutant HOXD13 with the p.Q317R substitution was unable to transactivate the human EPHA7 promoter. Molecular modeling data supported these experimental results. The calculated interactions energies were in agreement with the measured changes of the activity. Our data established the link between HOXD13 and two additional limb phenotypes-syndactyly type V and brachydactyly type A4-and demonstrated that a polyalanine contraction in HOXD13, most likely, led to other digital anomalies but not to synpolydactyly. We suggest the term HOXD13 limb morphopathies for the spectrum of limb disorders caused by HOXD13 mutations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据