4.8 Article

Composite materials with viscoelastic stiffness greater than diamond

期刊

SCIENCE
卷 315, 期 5812, 页码 620-622

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1135837

关键词

-

向作者/读者索取更多资源

We show that composite materials can exhibit a viscoelastic modulus (Young's modulus) that is far greater than that of either constituent. The modulus, but not the strength, of the composite was observed to be substantially greater than that of diamond. These composites contain barium-titanate inclusions, which undergo a volume-change phase transformation if they are not constrained. In the composite, the inclusions are partially constrained by the surrounding metal matrix. The constraint stabilizes the negative bulk modulus (inverse compressibility) of the inclusions. This negative modulus arises from stored elastic energy in the inclusions, in contrast to periodic composite metamaterials that exhibit negative refraction by inertial resonant effects. Conventional composites with positive-stiffness constituents have aggregate properties bounded by a weighted average of constituent properties; their modulus cannot exceed that of the stiffest constituent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据