4.8 Article

Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb

期刊

NATURE
卷 445, 期 7128, 页码 627-630

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature05524

关键词

-

向作者/读者索取更多资源

The control of the broadband frequency comb(1) emitted from a mode-locked femtosecond laser has permitted a wide range of scientific and technological advances - ranging from the counting of optical cycles for next-generation atomic clocks(1,2) to measurements of phase-sensitive high-field processes(3). Aunique advantage of the stabilized frequency comb is that it provides, in a single laser beam, about a million optical modes with very narrow linewidths(4) and absolute frequency positions known to better than one part in 10(15) (ref. 5). One important application of this vast array of highly coherent optical fields is precision spectroscopy, in which a large number of modes can be used to map internal atomic energy structure and dynamics(6,7). However, an efficient means of simultaneously identifying, addressing and measuring the amplitude or relative phase of individual modes has not existed. Here we use a high-resolution disperser(8,9) to separate the individual modes of a stabilized frequency comb into a two-dimensional array in the image plane of the spectrometer. We illustrate the power of this technique for high-resolution spectral fingerprinting of molecular iodine vapour, acquiring in a few milliseconds absorption images covering over 6 THz of bandwidth with high frequency resolution. Our technique for direct and parallel accessing of stabilized frequency comb modes could find application in high-bandwidth spread-spectrum communications with increased security, high-resolution coherent quantum control, and arbitrary optical waveform synthesis(10) with control at the optical radian level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据