4.8 Article

Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy

期刊

MOLECULAR CELL
卷 25, 期 3, 页码 427-440

出版社

CELL PRESS
DOI: 10.1016/j.molcel.2006.12.017

关键词

-

向作者/读者索取更多资源

Regulatory 14-3-3 proteins activate the plant plasma membrane H+-ATPase by binding to its C-terminal autoinhibitory domain. This interaction requires phosphorylation of a C-terminal, mode III, recognition motif as well as an adjacent span of approximately 50 amino acids. Here we report the X-ray crystal structure of 14-3-3 in complex with the entire binding motif, revealing a previously unidentified mode of interaction. A 14-3-3 dimer simultaneously binds two H+-ATPase peptides, each of which forms a loop within the typical 14-3-3 binding groove and therefore exits from the center of the dimer. Several H+-ATPase mutants support this structure determination. Accordingly, 14-3-3 binding could result in H+-ATPase oligomerization. Indeed, by using single-particle electron cryomicroscopy, the 3D reconstruction of the purified H+-ATPase/14-3-3 complex demonstrates a hexameric arrangement. Fitting of 14-3-3 and H+-ATPase atomic structures into the 3D reconstruction map suggests the spatial arrangement of the holocomplex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据