4.7 Article

Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: Fire Dynamics Simulator comparisons with measured data

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 140, 期 1-2, 页码 293-298

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2006.08.075

关键词

fire; smoke; carbon monoxide; channel; Fire Dynamics Simulator (FDS)

向作者/读者索取更多资源

Smoke and toxic gases, such as carbon monoxide, are the most fatal factors in fires. This paper models fire-induced smoke spread and carbon monoxide transportation in an 88 m long channel by Fire Dynamics Simulator (FDS) with large eddy simulation (LES). FDS is now a well-founded fire dynamics computational fluid dynamic (CFD) program, which was developed by National Institute of Standards and Technology (NIST). Two full scale experiments with fire sizes of 0.75 and 1.6 MW were conducted in this channel to validate the program. The spread of the fire-induced smoke flow together with the smoke temperature distribution along the channel, and the carbon monoxide concentration at an assigned position were measured. The FDS simulation results were compared with experimental data with fairly good agreement demonstrated. The validation work is then extended to numerically study the carbon monoxide concentration distribution, both vertically and longitudinally, in this long channel. Results showed that carbon monoxide concentration increase linearly with the height above the floor and decreases exponentially with the distance away from the fire source. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据