4.7 Article

A level set method for vaporizing two-phase flows

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 221, 期 2, 页码 837-853

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2006.07.003

关键词

level set; ghost fluid method; two-phase flows; reactive interface; vaporization; phase change; jump conditions

向作者/读者索取更多资源

Development and applications of numerical methods devoted to reactive interface simulations are presented. Emphasis is put on vaporization, where numerical difficulties arise in imposing accurate jump conditions for heat and mass transfers. We use both the Level Set Method and the Ghost Fluid Method to capture the interface motion accurately and to handle suitable jump conditions. A local vaporization mass flow rate per unit of surface area is defined and Stefan flow is involved in the process. Specific care has been devoted to the extension of discontinuous variables across the interface to populate ghost cells, in order to avoid parasitic currents and numerical diffusion across the interface. A projection method is set up to impose both the velocity field continuity and a divergence-free condition for the extended velocity field across the interface. The d(2) law is verified in the numerical simulations of the vaporization of an isolated static drop. Results are then presented for a water droplet moving in air. Vapor mass fraction and temperature fields inside and outside the droplet are presented. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据