4.5 Article

Rare earth metal alkyl complexes with methyl-substituted triazacyclononane-amide ligands: Ligand variation and ethylene polymerization catalysis

期刊

ORGANOMETALLICS
卷 26, 期 4, 页码 1014-1023

出版社

AMER CHEMICAL SOC
DOI: 10.1021/om060870a

关键词

-

向作者/读者索取更多资源

A series of rare earth metal dialkyl complexes was prepared with the general formula [Me(2)TACN-(B)-NR]M(CH2SiMe3)(2) (TACN = 1,4,7-triazacyclononane, B = (CH2)(2), SiMe2; R = tBu, secBu, nBu; M = Sc, Y, Nd, La). For M = Sc, mixed monoalkyl-monochloro complexes were also accessible. Selected examples of these complexes were structurally characterized and show the metal in a distorted octahedral environment. With Lewis or Bronsted acid activators the dialkyl compounds can be converted to the corresponding monoalkyl cations, which were characterized by NMR spectroscopy. Comparative testing in catalytic ethylene polymerization showed that the catalyst activity is most strongly influenced by the metal ionic radius, but that variations in the ligand backbone and substitution pattern do influence other factors, such as polymer molecular weight and catalyst stability. Catalysts with the intermediately sized rare earth metal yttrium generally showed the highest activity, but some of these catalysts produce polyethylene with broad molecular weight distributions, suggesting multisite behavior. Hypothetically this could be caused by intermolecular ligand scrambling processes. Evidence that these may occur was found in the isolation of the half-flyover bimetallic yttrium complex {[eta(3):eta(1)-[Me(2)TACN(CH2)(2)NtBu]Y(CH2SiMe3)}{eta(3):mu-eta(1)-[Me(2)TACN(CH2)(2)NtBu]Y(CH2SiMe3)(3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据