4.2 Article

Oxidation of phenol, styrene and methyl phenyl sulfide with H2O2 catalysed by dioxovanadium(V) and copper(II) complexes of 2-aminomethylbenzimidazole-based ligand encapsulated in zeolite-Y

期刊

JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
卷 263, 期 1-2, 页码 227-237

出版社

ELSEVIER
DOI: 10.1016/j.molcata.2006.08.084

关键词

zeolite-Y; encapsulation; catalyst; [VO2(sal-ambmz)]-Y; [Cu(sal-ambmz)Cl]-Y; phenol oxidation; oxidation of styrene; oxidation ofmethyt phenyl sulfide

向作者/读者索取更多资源

Interaction of oxovanadium(IV) exchanged zeolite-Y with the Schiff base derived from salicylaldehyde and 2-aminomethylbenzimidazole (Hsal-ambmz) in refluxing methanol followed by aerial oxidation leads to the formation of encapsulated dioxovanadium(V) complex, [VO2(sal-ambmz)]+Y(1). Similar reaction with copper(II) exchanged zeolite-Y followed by its treatment with aqueous NaCl gave encapsulated copper(II) complex, [Cu(sal-ambmz)Cl]-Y(2). These encapsulated complexes have been characterized by spectroscopic studies, thermal analysis and scanning electron micrographs (SEMs) as well as X-ray diffraction patterns. 3D model structure generated for neat complex [VO2(sal-ambmz)] suggests that zeolite-Y can accommodate these complexes in its nano-cavity without any strain. The encapsulated materials are active catalysts for the oxidation of phenol, styrene and methyl phenyl sulfide using H2O2 as an oxidant. Under the optimised reaction conditions about 42% conversion of phenol was obtained with these catalysts where the selectivity of catechol varied in the order: 2 (73.9%) > 1 (65.2%). With the conversion of 97.0% with 1 or 56.7% with 2, the oxidation of styrene gave styrene oxide, benzaldehyde, benzoic acid, 1-phenyl ethane-1,2-diol and phenylacetaldehyde as major products. A maximum of 96.1% (with 1) conversion of methyl phenyl sulfide was observed in which the selectivity of major product methyl phenyl sulfoxide was found to be ca. 98%. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据