4.5 Article

Diffusion-controlled reactions in small and structured spaces as a tool for describing living cell biochemistry

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/19/6/065149

关键词

-

向作者/读者索取更多资源

A simplified model of the living cell is studied. The reaction space is divided into compartments and the structured (non-compact) geometry is described in terms of a network consisting of containers connected by tubes. By assumption, reactions in the containers ( tubes) are allowed ( forbidden). It is assumed that the number of reactants is low, leading to stochastic (noisy) dynamics. By varying the transport rate among various containers D relative to the reaction rate within each container lambda, using either D >> lambda or D << lambda, a transition from a reaction- controlled ( reactants mix well) towards a diffusion-controlled ( large spatial fluctuations) regime can be studied. The focus is on a study of the timing of chemical reactions. For a single set of chemical reactions, the reaction times t = (t(1), t(2),...) are defined as the time intervals needed to synthesize a given amount of molecules ( of various types and in different regions of the system). The components of t are stochastic (non-independent) variables described in terms of two moments: average t = ( t1, t2,...) and standard deviation sigma = (sigma(1), sigma(2),...). In such a way it is possible to have a measure of the reaction speed ( t) and noise content ( s). A large number of chemical reactions were classified by monitoring how norms t and s vary as the geometry of the system changes from compact (tau(0), sigma(0)) towards structured (tau(n), sigma(n)). It is found that there are reactions that draw benefits in terms of both increased reaction speed (tau(n) < tau(0)) and noise reduction (sigma(n) < sigma(0)). Such reactions become faster and synchronize better in structured space. There are reactions that exhibit an increase in speed (tau(n) < tau(0)) but become more noisy and harder to synchronize (sigma(n) > sigma(0)). Opposite cases are possible where reactions become slower (tau(n) > tau(0)) but more accurate (sigma(n) < sigma(0)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据