4.6 Article

Carbonic anhydrase inhibition prevents and reverts cardiomyocyte hypertrophy

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 579, 期 1, 页码 127-145

出版社

BLACKWELL PUBLISHING
DOI: 10.1113/jphysiol.2006.123638

关键词

-

向作者/读者索取更多资源

Hypertrophic cardiomyocyte growth contributes substantially to the progression of heart failure. Activation of the plasma membrane Na+-H+ exchanger (NHE1) and Cl--HCO3- exchanger (AE3) has emerged as a central point in the hypertrophic cascade. Both NHE1 and AE3 bind carbonic anhydrase (CA), which activates their transport flux, by providing H+ and HCO3-, their respective transport substrates. We examined the contribution of CA activity to the hypertrophic response of cultured neonatal and adult rodent cardiomyocytes. Phenylephrine (PE) increased cell size by 37 +/- 2% and increased expression of the hypertrophic marker, atrial natriuretic factor mRNA, twofold in cultured neonatal rat cardiomyocytes. Cell size was also increased in adult cardiomyocytes subjected to angiotensin II or PE treatment. These effects were associated with increased expression of cytosolic CAII protein and the membrane-anchored isoform, CAIV. The membrane-permeant CA inhibitor, 6-ethoxyzolamide (ETZ), both prevented and reversed PE-induced hypertrophy in a concentration-dependent manner in neonate cardiomyocytes (IC50 = 18 mu M). ETZ and the related CA inhibitor methazolamide prevented hypertrophy in adult cardiomyocytes. In addition, ETZ inhibited transport activity of NHE1 and the AE isoform, AE3, with respective EC50 values of 1.2 +/- 0.3 mu M and 2.7 +/- 0.3 mu M. PE significantly increased neonatal cardiomyocyte Ca2+ transient frequency from 0.33 +/- 0.4 Hz to 0.77 +/- 0.04 Hz following 24 h treatment; these Ca2+-handling abnormalities were completely prevented by ETZ (0.28 +/- 0.07 Hz). Our study demonstrates a novel role for CA in mediating the hypertrophic response of cardiac myocytes to PE and suggests that CA inhibition represents an effective therapeutic approach towards mitigation of the hypertrophic phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据