4.7 Article

Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 91, 期 4, 页码 285-289

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2006.08.011

关键词

multicrystalline silicon; surfaces texturing; solar cell; optical properties; electrical properties

向作者/读者索取更多资源

Alkali etchant cannot produce uniformly textured surface to generate satisfactory open circuit voltage as well as the efficiency of the multi-crystalline silicon (mc-Si) solar cell due to the unavoidable grain boundary delineation with higher steps formed between successive grains of different orientations during alkali etching of me-Si. Acid textured surface formed by using chemicals with HNO3-HF-CH3COOH combination generally helps to improve the open circuit voltage but always gives lower short circuit current due to high reflectivity. Texturing mc-Si surface without grain boundary delineation is the present key issue of mc-Si research. We report the isotropic texturing with HF-HNO3-H2O Solution as an easy and reliable process for mc-Si texturing. Isotropic etching with acidic solution includes the formation of meso- and macro-porous structures on mc-Si that helps to minimize the grain-boundary delineation and also lowers the reflectivity of etched surface. The study of surface morphology and reflectivity of different mc-Si etched surfaces has been discussed in this paper. Using our best chemical recipe, we are able to fabricate mc-Si solar cell of similar to 14% conversion efficiency with PECVD AR coating of silicon nitride film. The isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low-cost silicon wafers as starting material with the proper optimization of the fabrication steps. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据