4.7 Article

Mercury dynamics in sulfide-rich sediments: Geochemical influence on contaminant mobilization within the Penobscot River estuary, Maine, USA

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 71, 期 4, 页码 929-941

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2006.10.012

关键词

-

向作者/读者索取更多资源

Research concerning the fate and biogeochemical cycling of mercury (Hg) within coastal ecosystems has suggested that microbially mediated diagenetic processes control Hg mobilization and that ligands with strong affinity for Hg, such as dissolved inorganic sulfide (S(-II)) and dissolved organic matter (DOM), control Hg partitioning between the dissolved and particulate phases. We have studied total Hg cycling in the sediments of the Penobscot River estuary using a combination of equilibrium porewater samplers and kinetic modeling. The Penobscot estuary has been subject to Hg contamination from multiple industries including a recently closed chlor-alkali production facility. The Hg concentration within the estuary surface sediments ranges from 1.25 to 27.5 nmol Hg g(-1) sediment and displays an association with sediment organic matter and a concentration maximum within 3 cm of the sediment-water interface (SWI). Porewater profiles for the Penobscot estuary are divisible into three kinetically discrete intervals with respect to Hg dynamics. Beginning at depth in the sediment and moving upward toward the SWI we have defined: (1) a zone of net Hg solubilization at depth, with a zero-order net Hg production rate (R-net(Hgr)) = 3.7-5.2 x 10(-20)mol cm(-3)s(-1), (2) a zone of net Hg consumption within the zone dominated by FeS(s) precipitation with R-net(Hgr) = -0.75 to - 1.4 x 10(-20)mol cm(-3)s(-1) and (3) a zone of net diffusive transfer within the vicinity of the SWI. Zone 1 is characterized by dissolved S(-II) concentrations ranging from 400 to 500 mu M. Equilibrium modeling in this zone suggests that inorganic S(-II) plays the dominant role in both mobilization of sediment-bound Hg and complexation of dissolved Hg. In zone 2, FeS(,) precipitation occurs concomitant with Hg consumption. Net transfer within zone 3 is consistent with the potential for ligand-mediated Hg efflux. across the SWI. S(-II)-mediated Hg mobilization at depth in Penobscot estuary sediments suggests a broadening of the depth interval over which biogeochemical Hg cycling must be examined. Our results also show that, while estuary sediments act as a net sink for particulate Hg inputs, they may also function for a considerable time interval as a source of dissolved Hg. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据