4.7 Article

Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm

期刊

BLOOD
卷 109, 期 4, 页码 1381-1386

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2006-07-032995

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL073714, HL073714, R01 HL060528] Funding Source: Medline

向作者/读者索取更多资源

Lymphocyte extravasation requires that emigrating cells process chemoattractant signals, typically mediated by chemokines, encountered on endothelial surface (apical) and subendothelial (basal) compartments. These signals are delivered under conditions of hemodynamic shear, a fundamental feature of all physiologic leukocyte-endothelial interactions. To analyze lymphocyte responsiveness to spatially distributed chemokines and their effects on transendothelial migration (TEM) under hydrodynamic shear, we constructed a transwell-based flow assay. We observed that the inflammatory chemokine CCL5 (RANTES) induces negligible human T-cell migration across inflamed human umbilical vascular endothelial cells (HUVECs) when displayed alone in the subendothelial compartment under static or hemodynamic shear conditions or when combined with apical CXCL12 (SDF-1 alpha) under static conditions. However, under shear stress, T cells encountering apically presented CXCL12 were primed to undergo robust LFA-1-dependent TEM toward subendothelial CCL5. Notably, locomotive T cells arriving at endothelial junctions were retained and extended pseudopodia into and through the junctions, thereby increasing sensitivity to subendothelial CCLS. These findings provide the first evidence that lymphocytes integrate, conditional to shear forces, permissive apical chemokine deposits, and integrin engagement signals, resulting in morphologic changes and amplified chemotaxis to an otherwise weak subendothelial chemokine signal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据