4.5 Article

Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans

期刊

BIOPHYSICAL JOURNAL
卷 92, 期 4, 页码 L33-L35

出版社

BIOPHYSICAL SOCIETY
DOI: 10.1529/biophysj.106.100982

关键词

-

资金

  1. NHLBI NIH HHS [P01 HL078931, P50 HL052319, P50 HL52319] Funding Source: Medline

向作者/读者索取更多资源

Beat-to-beat alternation of the action potential duration (APD) in paced cardiac cells has been linked to the onset of lethal arrhythmias. Both experimental and theoretical studies have shown that alternans at the single cell level can be caused by unstable membrane voltage (V-m) dynamics linked to steep APD-restitution, or unstable intracellular calcium (Ca) cycling linked to high sensitivity of Ca release from the sarcoplasmic reticulum on sarcoplasmic reticulum Ca load. Identifying which of these two mechanisms is the primary cause of cellular alternans, however, has remained difficult since Ca and Vm are bidirectionally coupled. Here, we use numerical simulations of a physiologically detailed ionic model to show that the origin of alternans can be inferred by measuring the length scales over which APD and Cai alternans reverse phase during spatially discordant alternans. The main conclusion is that these scales are comparable to a few millimeters and equal when alternans is driven by APD restitution, but differ markedly when alternans is driven predominantly by unstable Ca cycling. In the latter case, APD alternans still reverses phase on a millimeter tissue scale due to electrotonic coupling, while Ca alternans reverses phase on a submillimeter cellular scale. These results show that experimentally accessible measurements of Cai and Vm in cardiac tissue can be used to shed light on the cellular origin of alternans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据