4.6 Article

Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress - Relevance to Parkinson disease

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 7, 页码 4364-4372

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M603712200

关键词

-

向作者/读者索取更多资源

The cause of selective dopaminergic neuronal degeneration in Parkinson disease has still not been resolved, but it has been hypothesized that oxidative stress and the ubiquitin-proteasome system are important in the pathogenesis. In this report, we investigated the effect of proteasome inhibition on oxidative stress-induced cytotoxicity in PC12 cells, an in vitro model of Parkinson disease. Treatment with proteasome inhibitors provided significant protection against toxicity by 6-hydroxydopamine and H2O2 in a concentration-dependent manner. The measurement of intracellular reactive oxygen species using 2',7'-dichlorofluorescein diacetate demonstrated that lactacystin, a proteasome inhibitor, significantly reduced 6-hydroxydopamine- and H2O2-induced reactive oxygen species production. Proteasome inhibitors elevated the amount of glutathione and phosphorylated p38 mitogen-activated protein kinase (MAPK) prior to glutathione elevation. The treatment with lactacystin induced the nuclear translocation of NF-E2-related factor 2 (Nrf2) and increased the level of mRNA for gamma-glutamylcysteine synthetase, a rate-limiting enzyme in glutathione synthesis. Furthermore, SB203580, an inhibitor of p38 MAPK, abolished glutathione elevation and cytoprotection by lacta-cystin. These data suggest that proteasome inhibition afforded cyto-protection against oxidative stress by the elevation of glutathione content, and its elevation was mediated by p38 MAPK phosphorylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据