4.8 Article

Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0609905104

关键词

biotin transporter; functional genomics; transport systems

向作者/读者索取更多资源

BioMNY proteins are considered to constitute tripartite biotin transporters in prokaryotes. Recent comparative genomic and experimental analyses pointed to the similarity of BioMN to homologous modules of prokaryotic transporters mediating uptake of metals, amino acids, and vitamins. These systems resemble ATP-binding cassette-containing transporters and include typical ATPases (e.g., BioM). Absence of extracytoplasmic solute-binding proteins among the members of this group, however, is a distinctive feature. Genome context analyses uncovered that only one-third of the widespread bioY genes are linked to bioMN. Many bioY genes are located at loci encoding biotin biosynthesis, and others are unlinked to biotin metabolic or transport genes. Heterologous expression of the bioMNY operon and of the single bioY of the alpha-proteobacterium Rhodobacter capsulatus conferred biotin-transport activity on recombinant Escherichia coli cells. Kinetic analyses identified BioY as a high-capacity transporter that was converted into a high-affinity system in the presence of BioMN. BioMNY-mediated biotin uptake was severely impaired by replacement of the Walker A lysine residue in BioM, demonstrating dependency of high-affinity transport on a functional ATPase. Biochemical assays revealed that BioM, BioN, and BioY proteins form stable complexes in membranes of the heterologous host. Expression of truncated bio transport operons, each with one gene deleted, resulted in stable BioMN complexes but revealed only low amounts of BioMY and BioNY aggregates in the absence of the respective third partner. The results substantiate our earlier suggestion of a mechanistically novel group of membrane transporters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据