4.7 Article

Self-similar force-free wind from an accretion disc

期刊

出版社

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-2966.2006.11272.x

关键词

accretion, accretion discs; black hole physics; galaxies : jets

向作者/读者索取更多资源

We consider a self-similar force-free wind flowing out of an infinitely thin disc located in the equatorial plane. On the disc plane, we assume that the magnetic stream function P scales as P proportional to R(nu), where R is the cylindrical radius. We also assume that the azimuthal velocity in the disc is constant: v(phi) = Mc, where M < 1 is a constant. For each choice of the parameters nu and M, we find an infinite number of solutions that are physically well-behaved and have fluid velocity <= c throughout the domain of interest. Among these solutions, we show via physical arguments and time-dependent numerical simulations that the minimum-torque solution, i.e. the solution with the smallest amount of toroidal field, is the one picked by a real system. For nu >= 1, the Lorentz factor of the outflow increases along a field line as gamma approximate to M(z/R(fp))((2-nu)/2) approximate to R/R(A), where R(fp) is the radius of the foot-point of the field line on the disc and R(A) = R(fp)/M is the cylindrical radius at which the field line crosses the Alfven surface or the light cylinder. For nu < 1, the Lorentz factor follows the same scaling for z/R(fp) < M(-1/(1-nu)), but at larger distances it grows more slowly: gamma (z/R(fp))(nu/2). For either regime of nu, the dependence of gamma on M shows that the rotation of the disc plays a strong role in jet acceleration. On the other hand, the poloidal shape of a field line is given by z/R(fp) approximate to (R/R(fp))(2/(2-nu)) and is independent of M. Thus rotation has neither a collimating nor a decollimating effect on field lines, suggesting that relativistic astrophysical jets are not collimated by the rotational winding up of the magnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据