4.7 Article

Rice amylopectin fine structure variability affects starch digestion properties

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 55, 期 4, 页码 1475-1479

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf062349x

关键词

rice; starch; RVA; amylopectin; digestibility

向作者/读者索取更多资源

The possibility to identify or develop new rice cultivars with low glycemic response was investigated. Twelve rice cultivars with a narrow range of amylose contents were selected based on their wide variation in rapid viscoanalyzer (RVA) pasting breakdown to study the relationship between starch digestibility and amylopectin fine structure and pasting properties. Rice flour samples were cooked for in vitro digestibility analysis using the standard Englyst assay. RVA was performed for pasting properties of starches. Results showed that rapidly digestible starch (RDS) was highly and negatively correlated (r = -0.86, p < 0.01; r = -0.81, p < 0.01) with FrI long and FrII intermediate/short debranched amylopectin linear chains, respectively, and positively correlated (r = 0.79; p < 0.01) with FrIII very short linear chains. Slowly digestible (SDS) starch was positively correlated (r = 0.80, p < 0.01; 0.76, p < 0.01) with FrI and FrII, respectively, and negatively correlated (r = -0.76, p < 0.01) with FrIII. RVA breakdown viscosity was positively correlated (r = 0.88, p < 0.01) with RDS and negatively correlated (r = -0.89, p < 0.01) with SDS. Thus, the RVA method potentially could be used as a screening tool for starch digestion properties. This study reveals a molecular basis in amylopectin fine structure variability for starch digestion properties in rice cultivars and could have value in identifying slowly digesting cultivars as well as developing a breeding strategy to produce low glycemic rice cultivars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据