4.6 Review

Meeting the clean energy demand: Nanostructure architectures for solar energy conversion

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 111, 期 7, 页码 2834-2860

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp066952u

关键词

-

向作者/读者索取更多资源

The increasing energy demand in the near future will force us to seek environmentally clean alternative energy resources. The emergence of nanomaterials as the new building blocks to construct light energy harvesting assemblies has opened up new ways to utilize renewable energy sources. This article discusses three major ways to utilize nanostructures for the design of solar energy conversion devices: (i) Mimicking photosynthesis with donor-acceptor molecular assemblies or clusters, (ii) semiconductor assisted photocatalysis to produce fuels such as hydrogen, and (iii) nanostructure semiconductor based solar cells. This account further highlights some of the recent developments in these areas and points out the factors that limit the efficiency optimization. Strategies to employ ordered assemblies of semiconductor and metal nanoparticles, inorganic-organic hybrid assemblies, and carbon nanostructures in the energy conversion schemes are also discussed. Directing the future research efforts toward utilization of such tailored nanostructures or ordered hybrid assemblies will play an important task in achieving the desired goal of cheap and efficient fuel production (e.g., solar hydrogen production) or electricity (photochemical solar cells).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据