4.6 Article

Valley splitting in strained silicon quantum wells modeled with 2° miscuts, step disorder, and alloy disorder

期刊

APPLIED PHYSICS LETTERS
卷 90, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2591432

关键词

-

向作者/读者索取更多资源

Valley splitting (VS) in strained SiGe/Si/SiGe quantum wells grown on (001) and 2 degrees miscut substrates is computed in a magnetic field. Calculations of flat structures significantly overestimate, while calculations of perfectly ordered structures underestimate experimentally observed VS. Step disorder and confinement alloy disorder raise the VS to the experimentally observed levels. Atomistic alloy disorder is identified as the critical physics, which cannot be modeled with analytical effective mass theory. NEMO-3D is used to simulate up to 10(6) atoms, where strain is computed in the valence-force field and electronic structure in the sp(3)d(5)s(*) model. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据