4.8 Article

Establishing the entatic state in folding metallated Pseudomonas aeruginosa azurin

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0611149104

关键词

curved chevron; cupredoxin; metalloproteins

资金

  1. NIGMS NIH HHS [GM44557, R01 GM044557, R01 GM059663, GM059663] Funding Source: Medline

向作者/读者索取更多资源

Understanding how the folding of proteins establishes their functional characteristics at the molecular level challenges both theorists and experimentalists. The simplest test beds for confronting this issue are provided by electron transfer proteins. The environment provided by the folded protein to the cofactor tunes the metal's electron transport capabilities as envisioned in the entatic hypothesis. To see how the entatic state is achieved one must study how the folding landscape affects and in turn is affected by the metal. Here, we develop a coarse-grained functional to explicitly model how the coordination of the metal (which results in a so-called entatic or rack-induced state) modifies the folding of the metallated Pseudomonas aeruginosa azurin. Our free-energy functional-based approach directly yields the proper nonlinear extrathermodynamic free energy relationships for the kinetics of folding the wild type and several point-mutated variants of the metallated protein. The results agree quite well with corresponding laboratory experiments. Moreover, our modified free-energy functional provides a sufficient level of detail to explicitly model how the geometric entatic state of the metal modifies the dynamic folding nucleus of azurin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据