4.6 Article

A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces

期刊

LANGMUIR
卷 23, 期 5, 页码 2300-2303

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la063230l

关键词

-

向作者/读者索取更多资源

Superhydrophobic surfaces are biomimetic structures with potential applications in several key technological areas. In the past decade, several top-down and bottom-up fabrication methods have been developed to create such surfaces. These typically combine a hierarchical structure and low surface energy coatings to increase the contact angle and decrease the rolling angles. Silicon-based superhydrophobic surfaces are particularly attractive since they can be integrated with active electronics in order to protect them from the detrimental effects of environmental water and moisture. In this work, we introduce a simple and inexpensive process incorporating electrochemical surface modification (to create a fractal shape micro-nano topography) in combination with a final wet etching step to fabricate a superhydrophobic silicon surface with a contact angle of 160 degrees and a sliding angle of less than 1 degrees.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据