4.8 Article

Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0611119104

关键词

massively parallel signature sequencing; TAS

向作者/读者索取更多资源

Small RNAs play pivotal roles in regulating gene expression in higher eukaryotes. Among them, trans-acting siRNAs (ta-siRNAs) are a class of small RNAs that regulate plant development. The biogenesis of ta-siRNA depends on microRNA-targeted cleavage followed by the DCL4-mediated production of small RNAs phased in 21-nt increments relative to the cleavage site on both strands. To find TAS genes, we have used these characteristics to develop the first computational algorithm that allows for a comprehensive search and statistical evaluation of putative TAS genes from any given small RNA database. A search in Arabidopsis small RNA massively parallel signature sequencing (MPSS) databases with this algorithm revealed both known and previously unknown ta-siRNA-producing loci. We experimentally validated the biogenesis of ta-siRNAs from two PPR genes and the trans-acting activity of one of the ta-siRNAs. The production of ta-siRNAs from the identified PPR genes was directed by the cleavage of a TAS2derived ta-siRNA instead of by MicroRNAs as was reported previously for TASia, -b, -c, TAS2, and TAS3 genes. Our results indicate the existence of a small RNA regulatory cascade initiated by miR173-directed cleavage and followed by the consecutive production of ta-siRNAs from two TAS genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据