4.7 Article

Quantitative analysis of surface amine groups on plasma-polymerized ethylenediamine films using UV-visible spectroscopy compared to chemical derivatization with FT-IR spectroscopy, XPS and TOF-SIMS

期刊

APPLIED SURFACE SCIENCE
卷 253, 期 9, 页码 4112-4118

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2006.09.011

关键词

plasma polymerization; ethylenediamine; inductively coupled plasma chemical vapor deposition (ICP-CVD); Fourier transform infrared (FT-IR) spectroscopy; X-ray photoemission spectroscopy (XPS); time-of-flight secondary ion mass spectrum (TOF-SIMS); quantitative analysis

资金

  1. National Research Foundation of Korea [핵06A2803] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

A quantitative analysis of the surface density of amine groups on a plasma-polymerized ethylenediamine thin film deposited on a platinum surface using inductively coupled plasma chemical vapor deposition method is described. UV-visible spectroscopy together with a chemical derivatization technique using Fourier transform infrared (FT-IR) spectroscopy was used to obtain the quantitative information. Chemical tags of pentafluorobenzaldehyde were hybridized with the surface amine groups and were easily detected due to the characteristic absorption bands of C-F stretching, aromatic ring and C=N stretching vibrations in the reflection-absorption FT-IR spectra. The surface amine density was reproducibly controlled as a function of deposition plasma power and quantified using UV-visible spectroscopy. A good linear correlation was observed between the FT-IR intensities of the characteristic absorption bands and the surface amine densities, suggesting the possibility of using this chemical derivatization technique to quantify the surface densities of specific functional groups on an organic surface. Chemical derivatization was also used with X-ray photoelectron spectroscopy on the same samples, and the results were compared with those obtained from FT-IR and time-of-flight secondary ion mass spectrometry. Although each analysis technique has different probing depths from the surface, the three different data sets obtained from the chemical tags correlated well with each other since each analysis technique measured the chemical tags on the sample surface. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据