4.7 Article Proceedings Paper

Hydrogen storage on Li-doped single-walled carbon nanotubes: Computer simulation using the density functional theory

期刊

CATALYSIS TODAY
卷 120, 期 3-4, 页码 407-412

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2006.09.027

关键词

hydrogen adsorption; Li-doped SWCNTs; QM calculation; density functional theory

向作者/读者索取更多资源

The first principal calculation based on the density functional theory was performed to investigate the hydrogen storage behavior of Li-doped single-walled carbon nanotubes (SWCNTs). It was found that, through Li-doping, two new adsorption sites for hydrogen molecules are created in addition to the inherent three adsorptive sites which are exterior, interior and interstitial regions of pristine SWCNTs: the first site (denoted 'region 1') is the nanotube's sidewall whose electronic distribution status is influenced by the doped Li atoms. The second site (denoted 'region 2') exists on the positively charged Li atoms which result from the transfer of electrons from the Li atoms to the SWCNTs. The calculations show that although the adsorption energy in region 1 increases somewhat, the adsorption behavior of hydrogen is marginally different from that of pristine SWCNTs. However, in region 2, at least three hydrogen molecules can be adsorbed by each charged Li-atom, and based on the maximum Langmuir coverage (of 0.55), 1.1 hydrogen molecules can be adsorbed onto each charged Li-atom. When this result is considered together with the effective specific surface area, the hydrogen storage capacities of Li-doped SWCNTs with the doping ratio of LiC15 are approximately 0.1 wt% in region 1 and 1.17 wt% in region 2 at 10 MPa and 300 K so that the total H-2 storage capability is 1.27 wt%, which agrees well with previously reported results. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据