4.7 Article

Capillary pinching in a pinched microchannel

期刊

PHYSICS OF FLUIDS
卷 19, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2709704

关键词

-

向作者/读者索取更多资源

We report a study of the capillary pinching of a gas bubble by a wetting liquid inside a pinched channel. The capillary pinching induces very reproducible bubbling, at a very well-defined frequency. There are two regimes associated with drip and jet bubbling. In the latter, we show that highly monodispersed bubbles are formed by our pinched channel. The dynamics of the bubble formation also shows two distinct regimes: a long-duration elongation of the air bubble and a rapid relaxation of the interface after interface breakup. The slow regime depends on the flux imposed and the channel geometry. The rapid deformation dynamic regime depends very weakly on the boundary conditions. Scaling arguments are proposed in the context of the lubrication approximation to describe the two regimes. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据