4.6 Article

Theory of the Luttinger surface in doped Mott insulators

期刊

PHYSICAL REVIEW B
卷 75, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.104503

关键词

-

向作者/读者索取更多资源

We prove that the Mott insulating state is characterized by a divergence of the electron self-energy at well-defined values of momenta in the first Brillouin zone. When particle-hole symmetry is present, the divergence obtains at the momenta of the Fermi surface for the corresponding noninteracting system. Such a divergence gives rise to a surface of zeros (the Luttinger surface) of the single-particle Green function and offers a single unifying principle of Mottness from which pseudogap phenomena, spectral weight transfer, and broad spectral features emerge in doped Mott insulators. We also show that only when particle-hole symmetry is present does the volume of the zero surface equal the particle density. We identify that the general breakdown of Luttinger's theorem in a Mott insulator arises from the breakdown of a perturbative expansion for the self-energy in the single-particle Green function around the noninteracting limit. A modified version of Luttinger's theorem is derived for special cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据