4.8 Article

Covalent 2D and 3D networks from 1D nanostructures: Designing new materials

向作者/读者索取更多资源

We show extensive theoretical studies related to the generation and characterization of 2D and 3D ordered networks using 1D units that are connected covalently. We experimentally created multi-terminal junctions containing 1D carbon blocks in order to study the most common morphologies and branched structures that could be used in the theoretical design of network models. We found that the mechanical and electronic characteristics of ordered networks based on carbon nanotubes (ON-CNTs) are dominated by their specific super-architecture (hexagonal, cubic, square, and diamond-type). We show that charges follow specific paths through the nodes of the multi-terminal systems, which could result in complex integrated nanoelectronic circuits. The 3D architectures reveal their ability to support extremely high unidirectional stress when their mechanical properties are studied. In addition, these networks are shown to perform better than standard carbon aerogels because of their low mass densities, continuous porosities, and high surface areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据