4.3 Article

Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture

期刊

FEMS MICROBIOLOGY LETTERS
卷 268, 期 2, 页码 158-165

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1574-6968.2006.00576.x

关键词

biofilm; glucan-binding protein; Streptococcus mutans

资金

  1. NIDCR NIH HHS [DE10058, R01 DE010058] Funding Source: Medline

向作者/读者索取更多资源

Glucan plays a central role in sucrose-dependent biofilm formation by the dental pathogen Streptococcus mutans. This organism synthesizes several proteins capable of binding glucan. These are divided into the glucosyltransferases that catalyze the synthesis of glucan and the nonglucosyltransferase glucan-binding proteins (Gbps). The biological significance of the Gbps has not been thoroughly defined, but studies suggest that these proteins influence virulence and play a role in maintaining biofilm architecture by linking bacteria and extracellular molecules of glucan. We engineered a panel of Gbp mutants, targeting GbpA, GbpC, and GbpD, in which each gene encoding a Gbp was deleted individually and in combination. These strains were then analyzed by confocal microscopy and the biofilm properties were quantified by the biofilm quantification software COMSTAT. All biofilms produced by mutant strains lost significant depth, but the basis for the reduction in height depended on which particular Gbp was missing. The loss of the cell-bound GbpC appeared dominant as might be expected based on losing the principal receptor for glucan. The loss of an extracellular Gbp, either GbpA or GbpD, also profoundly changed the biofilm architecture, each in a unique manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据