4.6 Article

Impacts of wind power on thermal generation unit commitment and dispatch

期刊

IEEE TRANSACTIONS ON ENERGY CONVERSION
卷 22, 期 1, 页码 44-51

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEC.2006.889616

关键词

power system integration; unit commitment and economic dispatch; wind power; wind power forecast

向作者/读者索取更多资源

This paper proposes a new simulation method that can fully assess the impacts of large-scale wind power on system operations from cost, reliability, and environmental perspectives. The method uses a time series of observed and predicted 15-min average wind speeds at foreseen onshore- and offshore-wind farm locations. A Unit Commitment and Economic Dispatch (UG-ED) tool is adapted to allow for frequent revisions of conventional generation unit schedules, using information on current wind energy output and forecasts for the next 36 h. This is deemed the most faithful way of simulating actual operations and short-term planning activities for a system with large wind power penetration. The problem formulation includes ramp-rate constraints for generation schedules and for reserve activation, and minimum up-time and down-time of conventional units. Results are shown for a realistic future scenario of the Dutch power system. It is shown that problems such as insufficient regulating and reserve power-which are typically associated with the variablility and limited predictability of wind power-can only be assessed in conjunction with the specifies of the conventional generation system that wind power is integrated into. For the thermal system with a large share of combined heat and power (CHP) investigated here, wind power forecasting does not provide significant benefits for optimal unit commitment and dispatch. Minimum load problems do occur, which result in wasted wind in amounts increasing with the wind power installed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据