4.5 Article

Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 210, 期 5, 页码 836-844

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.02714

关键词

desiccation; freezing tolerance; heat-shock proteins; Chironomidae; polar insects

类别

向作者/读者索取更多资源

Adaptations to low moisture availability are arguably as important as cold resistance for polar terrestrial invertebrates, especially because water, in the form of ice, is biologically inaccessible for much of the year. Desiccation responses under ecologically realistic soil humidity conditions-those close to the wilting points of plants [98.9% relative humidity (RH)]-have not previously been examined in polar insect species. In the current study we show that, when desiccated at 98.2% RH, larvae of the Antarctic midge Belgica antarctica are more tolerant of dehydration than larvae desiccated at lower humidities (75% RH), and develop an increased tolerance to freezing. The slow rate of desiccation at this high RH enabled more than 50% of larvae to survive the loss of > 75% of their osmotically active water (OAW). Survival rates were further increased when rehydration was performed at 100% RH, rather than by direct contact with water. Two days at 98.2% RH resulted in a similar to 30% loss of OAW, and dramatically increased the freeze tolerance of larvae to -10 and -15 degrees C. The supercooling point of animals was not significantly altered by this desiccation treatment, and all larvae were frozen at -10 degrees C. This is the first evidence of desiccation increasing the freeze tolerance of a polar terrestrial arthropod. Maximum water loss and body fluid osmolality were recorded after 5 days at 98.2% RH, but osmolality values returned to predesiccated levels following just 1 h of rehydration in water, well before all the water lost through desiccation had been replenished. This suggests active removal of osmolytes from the extracellular fluids during the desiccation process, presumably to intracellular compartments. Heat-shock proteins appear not to contribute to the desiccation tolerance we observed in B. antarctica. Instead, we suggest that metabolite synthesis and membrane phospholipid adaptation are likely to be the underpinning physiological mechanisms enhancing desiccation and cold tolerance in this species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据