4.8 Article

Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants

期刊

WATER RESEARCH
卷 41, 期 5, 页码 1110-1120

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2006.11.050

关键词

nitrifiers; diversity; activated sludge; T-RFLP; functional redundancy

向作者/读者索取更多资源

We hypothesize that activated-sludge processes having stable and complete nitrification have significant and similar diversity and functional redundancy among its ammonia- and nitrite-oxidizing bacteria, despite differences in temperature, solids retention time (SRT), and other operating conditions. To evaluate this hypothesis, we examined the diversity of nitrifying bacterial communities in all seven water-reclamation plants (WRPs) operated by Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). These plants vary in types of influent waste stream, plant size, water temperature, and SRT. We used terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene and group-specific ammonia-monooxygenase functional gene (amoA) to investigate these hard-to-culture nitrifying bacteria in the full-scale WRPs. We demonstrate that nitrifying bacteria carrying out the same metabolism coexist in all WRPs studied. We found ammonia oxidizing bacteria (AOB) belonging to the Nitrosomonas europaea/eutropha, Nitrosomonas oligotropha, Nitrosomonas communis, and Nitrosospira lineages in all plants. We also observed coexisting Nitrobacter and Nitrospira genera for nitrite-oxidizing bacteria (NOB). Among the factors that varied among the WRPs, only the seasonal temperature variation seemed to change the nitrifying community, especially the balance between Nitrosospira and Nitrosomonas, although both coexisted in winter and summer samples. The coexistence of various nitrifiers in all WRPs is evidence of functional redundancy, a feature that may help maintain the stability of the system for nitrification. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据