4.8 Article

Macrophage response to methacrylate conversion using a gradient approach

期刊

ACTA BIOMATERIALIA
卷 3, 期 2, 页码 163-173

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2006.10.001

关键词

apoptosis; BisGMA; cytotoxicity; real-time RT-PCR; TEGDMA

资金

  1. NIDCR NIH HHS [Y1-DE-1021-04] Funding Source: Medline

向作者/读者索取更多资源

Incomplete conversion, an ongoing challenge facing photopolymerized methacrylate-based polymers, affects leachables as well as the resulting polymer network. As novel polymers and composites are developed, methods to efficiently screen cell response to these materials and their properties, including conversion, are needed. In this study, an in vitro screening methodology was developed to assess cells cultured directly on cross-linked polymer networks. A gradient in methacrylate double bond conversion was used to increase the experimental throughput. A substrate of 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl] propane (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) was prepared with a conversion ranging from 43.0% to 61.2%. Substrates aged for 7 days had no significant differences in surface roughness or hydrophilicity as a function of conversion. Leachables were detectable for at least 7 days using UV absorption.. but their global cytotoxicity was insignificant after 5 days of aging. Thus, RAW 264.7 macrophage-like cells were cultured on aged substrates to evaluate the cell response to conversion, with possible contributions from the polymer network and local leachables. Conversions of 45% and 50% decreased viability (via calcein/ethidium staining) and increased apoptosis (via annexin-V staining). No significant changes (p > 0.05) in tumor necrosis factor-alpha and interleukin-1 beta gene expression, as measured by quantitative, real-time reverse transcription-polymerase chain reaction, were seen as conversion increased. Thus, conversions greater than 50% are recommended for equimolar BisGMA/TEGDMA. The ability to distinguish cell response as a function of conversion is useful as an initial biological screening platform to optimize dental polymers. Published by Elsevier Ltd on behalf of Acta Materialia Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据