4.7 Article

MEF2C transcription factor controls chondrocyte hypertrophy and bone development

期刊

DEVELOPMENTAL CELL
卷 12, 期 3, 页码 377-389

出版社

CELL PRESS
DOI: 10.1016/j.devcel.2007.02.004

关键词

-

资金

  1. NIGMS NIH HHS [GM08014] Funding Source: Medline

向作者/读者索取更多资源

Chondrocyte hypertrophy is essential for endochondral bone development. Unexpectedly, we discovered that MEF2C, a transcription factor that regulates muscle and cardiovascular development, controls bone development by activating the gene program for chondrocyte hypertrophy. Genetic deletion of Mef2c or expression of a dominant-negative MEF2C mutant in endochondral cartilage impairs hypertrophy, cartilage angiogenesis, ossification, and longitudinal bone growth in mice. Conversely, a superactivating form of MEF2C causes precocious chondrocyte hypertrophy, ossification of growth plates, and dwarfism. Endochondral bone formation is exquisitely sensitive to the balance between MEF2C and the corepressor histone deacetylase 4 (HDAC4), such that bone deficiency of Mef2c mutant mice can be rescued by an Hdac4 mutation, and ectopic ossification in Hdac4 null mice can be diminished by a heterozygous Mef2c mutation. These findings reveal unexpected commonalities in the mechanisms governing muscle, cardiovascular, and bone development with respect to their regulation by MEF2 and class II HDACs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据