4.7 Article

Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats

期刊

NEUROPSYCHOPHARMACOLOGY
卷 32, 期 3, 页码 607-615

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.npp.1301127

关键词

cannabinoid; rimonabant; opiate reward; opioid neuropeptide; development

资金

  1. NIDA NIH HHS [DA19350] Funding Source: Medline

向作者/读者索取更多资源

Cannabis use is a hypothesized gateway to subsequent abuse of other drugs such as heroin. We currently assessed whether Delta-9-tetrahydrocannabinol ( THC) exposure during adolescence modulates opiate reinforcement and opioid neural systems in adulthood. Long - Evan male rats received THC ( 1.5 mg/ kg intraperitoneally ( i. p.)) or vehicle every third day during postnatal days ( PNDs) 28 - 49. Heroin self-administration behavior ( fixed ratio-1; 3- h sessions) was studied from young adulthood ( PND 57) into full adults ( PND 102). THC- pretreated rats showed an upward shift throughout the heroin self-administration acquisition ( 30 mu g/kg/ infusion) phase, whereas control animals maintained the same pattern once stable intake was obtained. Heightened opiate sensitivity in THC animals was also evidenced by higher heroin consumption during the maintenance phase ( 30 and 60 mu g/kg/ infusion) and greater responding for moderate - low heroin doses ( dose - response curve: 7.5, 15, 30, 60, and 100 mu g/ kg/ injection). Specific disturbance of the endogenous opioid system was also apparent in the brain of adults with adolescent THC exposure. Striatal preproenkephalin mRNA expression was exclusively increased in the nucleus accumbens ( NAc) shell; the relative elevation of preproenkephalin mRNA in the THC rats was maintained even after heroin self- administration. Moreover, mu opioid receptor (mu OR) GTP-coupling was potentiated in mesolimbic and nigrostriatal brainstem regions in THC- pretreated animals. mOR function in the NAc shell was specifically correlated to heroin intake. The current findings support the gateway hypothesis demonstrating that adolescence cannabis exposure has an enduring impact on hedonic processing resulting in enhanced opiate intake, possibly as a consequence of alterations in limbic opioid neuronal populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据