4.5 Article

Kinetics of induced crystallization of the LC1-xSilx system

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 8, 页码 1916-1922

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp067736o

关键词

-

向作者/读者索取更多资源

This study explores the kinetics of a new feature, called induced crystallization (IC), observed in an Aerosil dispersed octylcyanobiphenyl (8CB) liquid crystal system. Heating rate dependent experiments were performed using modulation differential scanning calorimetry (MDSC) at various heating ramp rates. In the presence of Aerosil nanoparticles, a well-defined exothermic peak was found as an additional feature on the heating scan before the melting transition, which was absent in the bulk 8CB; hence, we like to call it an IC as it is induced by Aerosil nanoparticles in the system. The system LC(1-x)Sil(x) was prepared by mixing Aerosil nanoparticles in the bulk 8CB by the solvent dispersion method (SDM) where LC represents bulk 8CB and Sil represents Aerosil nanoparticles with x as the Aerosil fraction. The concentration of the Aerosil nanoparticles (x) varied from 0 to 0.2 g/cm(3) in the bulk 8CB. The IC transition peak showed a temperature shift and change in the shape and size in the presence of Aerosil nanoparticles. In addition, this transition shifted significantly with different heating ramp rates following an Arrhenius behavior showing activated kinetics. The presence of Aerosil nanoparticles caused a significant increase in the enthalpy and decrease in the activation energy for the IC transition as the density of Aerosil nanoparticles increases and showed a saturation for the highest density of Aerosil nanoparticles. This behavior can be explained in terms of molecular disorder and surface molecular interaction induced by adding Aerosil nanoparticles into the bulk of 8CB liquid crystal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据