4.6 Article

Preferred orientation and elastic anisotropy in shales

期刊

GEOPHYSICS
卷 72, 期 2, 页码 D33-D40

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.2435966

关键词

-

向作者/读者索取更多资源

Anisotropy in shales is becoming an important issue in exploration and reservoir geophysics. In this study, the crystallographic preferred orientation of clay platelets that contributes to elastic anisotropy was determined quantitatively by hard monochromatic X-ray synchrotron diffraction in two different shales from drillholes off the coast of Nigeria. To analyze complicated diffraction images with five different phases (illite/smectite, kaolinite, quartz, siderite, feldspar) and many overlapping peaks, we applied a methodology based on the crystallographic Rietveld method. The goal was to describe the intrinsic physical properties of the sample (phase composition, crystallographic preferred orientation, crystal structure, and microstructure) and compute macroscopic elastic properties by averaging single crystal properties over the orientation distribution for each phase. Our results show that elastic anisotropy resulting from crystallographic preferred orientation of the clay particles can be determined quantitatively. This provides a possible way to compare measured seismic anisotropy and texture-derived anisotropy and to estimate the contribution of the low-aspect ratio pores aligned with bedding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据