4.8 Article

GATA-1 is essential in EGF-mediated induction of nucleotide excision repair activity and ERCC1 expression through ERK2 in human hepatoma cells

期刊

CANCER RESEARCH
卷 67, 期 5, 页码 2114-2123

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-06-3821

关键词

-

类别

向作者/读者索取更多资源

The nucleotide excision repair (NER) pathway and its leading gene excision-repair cross-complementary I (ERCC1) have been shown to be up-regulated in hepatocellular carcinomas even in the absence of treatment with chemotherapeutics. The aim of this study was to determine the mechanism involved in NER regulation during the liver cell growth observed in hepatocellular carcinoma. Both NER activity and ERCC1 expression were increased after exposure to the epidermal growth factor (EGF) in cultured normal and tumoral human hepatocytes. These increases correlated with the activation of the kinase signaling pathway mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK that is known to be a key regulator in the G, phase of the hepatocyte cell cycle. Moreover, EGF-mediated activation of ERCC1 was specifically inhibited by either the addition of U0126, a MEK/ERK inhibitor or small interfering RNA-mediated knockdown of ERK2. Basal expression of ERCC1 was decreased in the presence of the phosphoinositide-3-kinase (PI3K) inhibitor and small hairpin RNA (shRNA) against the PI3K pathway kinase FKBP12-rapamycin-associated protein or mammalian target of rapamycin. Transient transfection of human hepatocytes with constructs containing different sizes of the 5'-flanking region of the ERCC1 gene upstream of the luciferase reporter gene showed an increase in luciferase activity in EGF-treated cells, which correlated with the presence of the nuclear transcription factor GATA-1 recognition sequence. The recruitment of GATA-1 was confirmed by chromatin immunoprecipitation assay. In conclusion, these results represent the first demonstration of an up-regulation of NER and ERCC1 in EGF-stimulated proliferating hepatocytes. The transcription factor GATA-I plays an essential role in the induction of ERCCI through the mitogen-activated protein kinase (MAPK) pathway, whereas the PI3K signaling pathway contributes to ERCCI basal expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据