4.8 Article

Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses

期刊

PLANT JOURNAL
卷 49, 期 6, 页码 1091-1107

出版社

WILEY
DOI: 10.1111/j.1365-313X.2006.03020.x

关键词

pre-mRNA splicing; alternative splicing; Arabidopsis; SR proteins; stresses; hormones

向作者/读者索取更多资源

Precursor mRNAs with introns can undergo alternative splicing (AS) to produce structurally and functionally different proteins from the same gene. Here, we show that the pre-mRNAs of Arabidopsis genes that encode serine/arginine-rich (SR) proteins, a conserved family of splicing regulators in eukaryotes, are extensively alternatively spliced. Remarkably about 95 transcripts are produced from only 15 genes, thereby increasing the complexity of the SR gene family transcriptome by six-fold. The AS of some SR genes is controlled in a developmental and tissue-specific manner. Interestingly, among the various hormones and abiotic stresses tested, temperature stress (cold and heat) dramatically altered the AS of pre-mRNAs of several SR genes, whereas hormones altered the splicing of only three SR genes. These results indicate that abiotic stresses regulate the AS of the pre-mRNAs of SR genes to produce different isoforms of SR proteins that are likely to have altered function(s) in pre-mRNA splicing. Sequence analysis of splice variants revealed that predicted proteins from a majority of these variants either lack one or more modular domains or contain truncated domains. Because of the modular nature of the various domains in SR proteins, the proteins produced from splice variants are likely to have distinct functions. Together our results indicate that Arabidopsis SR genes generate surprisingly large transcriptome complexity, which is altered by stresses and hormones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据