4.7 Article

Highly constrained proteins contain an unexpectedly large number of amino acid tandem repeats

期刊

GENOMICS
卷 89, 期 3, 页码 316-325

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygeno.2006.11.011

关键词

amino acid repeat; slippage; triplet expansion; protein evolutionary rate

向作者/读者索取更多资源

Single-amino-acid tandem repeats are very common in mammalian proteins but their function and evolution are still poorly understood. Here we investigate how the variability and prevalence of amino acid repeats are related to the evolutionary constraints operating on the proteins. We find a significant positive correlation between repeat size difference and protein nonsynonymous substitution rate in human and mouse orthologous genes. This association is observed for all the common amino acid repeat types and indicates that rapid diversification of repeat structures, involving both trinucleotide slippage and nucleotide substitutions, preferentially occurs in proteins subject to low selective constraints. However, strikingly, we also observe a significant negative correlation between the number of repeats in a protein and the gene nonsynonymous substitution rate, particularly for glutamine, glycine, and alanine repeats. This implies that proteins subject to strong selective constraints tend to contain an unexpectedly high number of repeats, which tend to be well conserved between the two species. This is consistent with a role for selection in the maintenance of a significant number of repeats. Analysis of the codon structure of the sequences encoding the repeats shows that codon purity is associated with high repeat size interspecific variability. Interestingly, polyalanine and polyglutamine repeats associated with disease show very distinctive features regarding the degree of repeat conservation and the protein sequence selective constraints. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据