4.0 Article

Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet

期刊

AGE
卷 29, 期 1, 页码 29-39

出版社

SPRINGER
DOI: 10.1007/s11357-006-9018-4

关键词

aging; amino acid; caloric restriction; demography; dietary restriction; Drosophila; longevity; methionine; mortality; nutrition

向作者/读者索取更多资源

Experimentally restricting dietary calories, while maintaining adequate dietary nutrient content, extends lifespan in phylogenetically diverse species; thus suggesting the existence of conserved pathways which can modify lifespan in response to energy intake. However, in some cases the impact on longevity may depend on the quality of the energy source. In Drosophila, restriction of dietary yeast yields considerable lifespan extension whereas isocaloric restriction of dietary sugar yields only modest extension, indicating that other diet-responsive pathways can modify lifespan in this species. In rodents, restricting intake of a single amino acid - methionine - extends lifespan. Here we show that dietary methionine can modify lifespan in adult female, non-virgin Oregon-R strain Drosophila fed a chemically defined media. Compared to a diet containing 0.135% methionine and 15% glucose, high dietary methionine (0.405%) shortened maximum lifespan by 2.33% from 86 to 84 days and mean lifespan by 9.55% from 71.7 to 64.9 days. Further restriction of methionine to 0.045% did not extend maximum lifespan and shortened mean lifespan by 1.95% from 71.1 to 70.3 days. Restricting glucose from 15% to 5% while holding methionine at a concentration of 0.135%, modestly extended maximum lifespan by 5.8% from 86 to 91 days, without extending mean lifespan. All these diet-induced changes were highly significant (log-rank p < 0.0001). Notably, all four diets resulted in considerably longer life spans than those typically reported for flies fed conventional yeast and sugar based diets. Such defined diets can be used to identify lifespan-modifying pathways and specific gene-nutrient interactions in Drosophila.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据