4.1 Article

Metabolic oligosaccharide engineering: perspectives, applications, and future directions

期刊

MOLECULAR BIOSYSTEMS
卷 3, 期 3, 页码 187-194

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b614939c

关键词

-

资金

  1. NCI NIH HHS [1 R01 CA112314-01A1] Funding Source: Medline

向作者/读者索取更多资源

Many adhesion and signaling molecules critical for development, as well as surface markers implicated in diseases ranging from cancer to influenza, contain oligosaccharides that modify their functions. Inside a cell, complex glycosylation pathways assemble these oligosaccharides and attach them to proteins and lipids as they traffic to the cell surface. Until recently, practical technologies to manipulate glycosylation have lagged unlike the molecular biologic and genetic methods available to intervene in nucleic acid and protein biochemistry; now, metabolic oligosaccharide engineering shows promise for manipulating glycosylation. In this methodology, exogenously-supplied non-natural sugars intercept biosynthetic pathways and exploit the remarkable ability of many of the enzymes involved in glycosylation to process metabolites with slightly altered chemical structures. To date, non-natural forms of sialic acid, GalNAc, GlcNAc, and fucose have been incorporated into glycoconjugates that appear on the cell. surface; in addition O-GlcNAc protein modification involved in intracellular signaling has been tagged with modified forms of this sugar. Reactive functional groups, including ketones, azides, and thiols, have been incorporated into glycoconjugates and thereby provide chemical 'tags' that can be used for diverse purposes ranging from drug delivery to new modes of carbohydrate-based cell adhesion that can be used to control stem cell destiny. Finally, strategies for further engineering non-natural sugars to improve their pharmacological properties and provide complementary biological activities, such as addition of short chain fatty acids, are discussed in this article.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据