4.6 Article

Impact of Ge-68/Ga-68-based versus CT-based attenuation correction on PET

期刊

MEDICAL PHYSICS
卷 34, 期 3, 页码 889-897

出版社

AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS
DOI: 10.1118/1.2437283

关键词

PET; PET/CT; attenuation correction; transmission measurements; quantitative imaging

向作者/读者索取更多资源

Transmission (Tx) scans are used in PET for attenuation correction (AC). For standalone PET this is typically done using Ge-68/Ga-68 sources, for PET CT using CT. Therefore, standalone PET suffers from emission contamination during Tx scans, PET-CT does not. Here, we studied the effects of AC across the two systems. With a cylindrical phantom (Jaszczak PhantomT (TM), Data Spectrum Corp.) with hollow spheres (diameter 10-60 mm) two studies were performed. In the first study the hollow spheres were filled with 150 kBq/ml FDG and the background with 15 kBq/ml. In the second study we used 120 kBq/ml in the spheres and 50 kBq/ml in the background. Both a low and a high object-to-background ratio are studied this way. Multiple scans were acquired on a standalone PET and a PET CT until 1% of the initial concentration remained. Activity concentration in the spheres and background was measured from the reconstructed images and compared to the actual concentration. For standalone PET, emission scans were reconstructed using hot Tx (emission contaminated) and cold Tx (not contaminated). Uniformity within the spheres was investigated by profile analysis. For PET-CT, the concentration in the big spheres (> 16 mm) was recovered. For the smaller spheres, recovery was insufficient due to partial volume effects. For standalone PET the recoveries of the spheres (> 16 mm) were 20% (first study) and 13% (second study) lower than the actual concentration. Using hot Tx, underestimation of activity concentration was up to > 50%. Nonuniformities within the biggest spheres were up to 35%, 12%, and 5% (first study), using standalone PET with hot Tx, cold Tx, and using PET-CT, respectively. Due to contamination of AC by emission photons, standalone PET results in a bias in the activity concentration and uniformity. Especially when patients get follow-up PET scans on both standalone PET and PET CT, this may lead to misinterpretation. (c) 2007 American Association of Physicists in Medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据