4.7 Article

Structure activity studies with xenobiotic substrates using carboxylesterases isolated from Arabidopsis thaliana

期刊

PHYTOCHEMISTRY
卷 68, 期 6, 页码 811-818

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2006.12.014

关键词

Arabidopsis thaliana; carboxylesterase; ester series; alpha/beta hydrolases; methylumbelliferone

向作者/读者索取更多资源

Carboxylesterases (CXEs) catalyse the hydrolysis of xenobiotics and natural products radically altering their biological activities. Whereas the substrate selectivity of animal CXEs, such as porcine liver esterase (PLE) have been well studied, the respective enzymes in plants have yet to be defined and their activities determined. Using Arabidopsis thaliana (At) as a source, five representative members of the alpha/beta hydrolase AtCXE family of proteins have been cloned, expressed and the purified recombinant proteins assayed for esterase activity with xenobiotic substrates. Two members, AtCXE5 and AtCXE18 were found to be active carboxylesterases, though AtCXE5 proved to be highly unstable as a soluble protein. AtCXE18 and the previously characterised S-formylglutathione hydrolase from Arabidopsis (AtSFGH) were assayed against a series of esters based on methylumbelliferone in which the acyl moiety was varied with respect to size and conformation. The same series was used to assay crude esterase preparation from Arabidopsis plants and the results compared with those obtained with the commonly used PLE. With straight chain esters, AtCXE18 behaved like PLE, but the Arabidopsis hydrolases proved less tolerant of branched chain acyl components than the mammalian enzyme. While none of the enzyme preparations accurately reflected all the activities determined with crude Arabidopsis protein extracts, the plant enzymes proved more useful than PLE in predicting the hydrolysis of the more sterically constrained esters. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据