4.7 Article

Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance

期刊

ACTA MATERIALIA
卷 55, 期 5, 页码 1695-1701

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2006.10.030

关键词

phase transformations; thermodynamics; thin films; crystalline oxides; corrosion

向作者/读者索取更多资源

A thermodynamic model is developed to understand the origin of variation in the microstructure of ZrO2 film formed on zirconium alloys and its effects on corrosion resistance. The correlation among the tetragonal phase fraction, the stress (macroscopic and internal one), the ZrO2 grain size and the microstructural change of oxide film is formulized, and then analyzed. The results show that many complicated factors simultaneously govern the microstructure of oxide film. The tetragonal phase content near the oxide/metal interface, the macroscopic compressive stress near the interface, the decline gradient of macroscopic compressive stress and the internal stress induced by the transformation from the tetragonal to the monoclinic phase have very important influences on the transition from columnar grains to equiaxed grains, the crack formation and the degradation of oxidation resistance. The presence of intermetallic precipitates in oxide film may effectively relax the internal stress caused by transformation strain, stabilize the columnar-grain structure and reduce the probability of crack formation. How to reduce the transformation stress in the oxide film is a key to improve the corrosion resistance of zirconium alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据