4.4 Article

Optimization of nanoparticle size for plasmonic enhancement of fluorescence

期刊

PLASMONICS
卷 2, 期 1, 页码 15-22

出版社

SPRINGER
DOI: 10.1007/s11468-006-9020-9

关键词

plasmonic; fluorescence enhancement; metallic nanoparticles

向作者/读者索取更多资源

This paper reports on the enhancement of fluorescence that can result from the proximity of fluorophores to metallic nanoparticles (NPs). This plasmonic enhancement, which is a result of the localized surface plasmon resonance at the metal surface, can be exploited to improve the signal obtained from optical biochips and thereby lower the limits of detection. There are two distinct enhancement effects: an increase in the excitation of the fluorophore and an increase in its quantum efficiency. This study focuses on the first of these effects where the maximum enhancement occurs when the NP plasmon resonance wavelength coincides with the fluorophore absorption band. In this case, the excitation enhancement is proportional to the square of the amplitude of the electric field. The scale of the enhancement depends on many parameters, such as NP size and shape, metal type, and NP fluorophore separation. A model system consisting of spherical gold/silver alloy NPs, surrounded by a silica spacer shell, to which is attached a fluorescent ruthenium dye, was chosen and the dependence of the fluorescence enhancement on NP diameter was investigated. Theoretical calculations, based on Mie theory, were carried out to predict the maximum possible enhancement factor for spherical NPs with a fixed composition and a range of diameters. Spherical NPs of the same composition were fabricated by chemical preparation techniques. The NPs were coated with a thin silica shell to overcome quenching effects and the dye was attached to the shell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据