4.7 Article

Evolution of gravitational orbits in the expanding universe

期刊

PHYSICAL REVIEW D
卷 75, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.75.064031

关键词

-

向作者/读者索取更多资源

The gravitational action of the smooth energy-matter components filling in the universe can affect the orbit of a planetary system. Changes are related to the acceleration of the cosmological scale size R. In a universe with significant dark matter, a gravitational system expands or contracts according to the amount and equation of state of the dark energy. At present time, the Solar System, according to the Lambda CDM scenario emerging from observational cosmology, should be expanding if we consider only the effect of the cosmological background. Its fate is determined by the equation of state of the dark energy alone. The mean motion and periastron precession of a planet are directly sensitive to R/R, whereas variations with time in the semimajor axis and eccentricity are related to its time variation. Actual bounds on the cosmological deceleration parameters q(0) from accurate astrometric data of perihelion precession and changes in the third Kepler's law in the Solar System fall short of 10 orders of magnitude with respect to estimates from observational cosmology. Future radio-ranging measurements of outer planets could improve actual bounds by 5 orders of magnitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据