4.3 Article

Perceptual adaptation to spectrally shifted vowels: Training with nonlexical labels

出版社

SPRINGER
DOI: 10.1007/s10162-006-0059-2

关键词

nonlexial label training; perceptual adaptation; spectrally shifted vowels

资金

  1. NIDCD NIH HHS [R01 DC004792, R01-DC004792] Funding Source: Medline

向作者/读者索取更多资源

Although normal-hearing (NH) and cochlear implant (CI) listeners are able to adapt to spectrally shifted speech to some degree, auditory training has been shown to provide more complete and/or accelerated adaptation. However, it is unclear whether listeners use auditory and visual feedback to improve discrimination of speech stimuli, or to learn the identity of speech stimuli. The present study investigated the effects of training with lexical and nonlexical labels on NH listeners' perceptual adaptation to spectrally degraded and spectrally shifted vowels. An eight-channel sine wave vocoder was used to simulate CI speech processing. Two degrees of spectral shift (moderate and severe shift) were studied with three training paradigms, including training with lexical labels (i.e., hayed, had, who'd, etc.), training with nonlexical labels (i.e., randomly assigned letters f, b, g, etc.), and repeated testing with lexical labels (i.e., test-only paradigm without feedback). All training and testing was conducted over 5 consecutive days, with two to four training exercises per day. Results showed that with the test-only paradigm, lexically labeled vowel recognition significantly improved for moderately shifted vowels; however, there was no significant improvement for severely shifted vowels. Training with nonlexical labels significantly improved the recognition of nonlexically labeled vowels for both shift conditions; however, this improvement failed to generalize to lexically labeled vowel recognition with severely shifted vowels. Training with lexical labels significantly improved lexically labeled vowel recognition with severely shifted vowels. These results suggest that storage and retrieval of speech patterns in the central nervous system is somewhat robust to tonotopic distortion and spectral degradation. Although training with nonlexical labels may improve discrimination of spectrally distorted peripheral patterns, lexically meaningful feedback is needed to identify these peripheral patterns. The results also suggest that training with lexically meaningful feedback may be beneficial to Cl users, especially patients with shallow electrode insertion depths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据